Evaluating Bayesian Models with Posterior Dispersion Indices
نویسندگان
چکیده
Probabilistic modeling is cyclical: we specify a model, infer its posterior, and evaluate its performance. Evaluation drives the cycle, as we revise our model based on how it performs. This requires a metric. Traditionally, predictive accuracy prevails. Yet, predictive accuracy does not tell the whole story. We propose to evaluate a model through posterior dispersion. The idea is to analyze how each datapoint fares in relation to posterior uncertainty around the hidden structure. This highlights datapoints the model struggles to explain and provides complimentary insight to datapoints with low predictive accuracy. We present a family of posterior dispersion indices (PDI) that capture this idea. We show how a PDI identifies patterns of model mismatch in three real data examples: voting preferences, supermarket shopping, and population genetics.
منابع مشابه
Bayesian Quantile Regression with Adaptive Lasso Penalty for Dynamic Panel Data
Dynamic panel data models include the important part of medicine, social and economic studies. Existence of the lagged dependent variable as an explanatory variable is a sensible trait of these models. The estimation problem of these models arises from the correlation between the lagged depended variable and the current disturbance. Recently, quantile regression to analyze dynamic pa...
متن کاملDiscount Weighted Bayesian Model Averaging for Portfolio Decisions in Matrix Variate Dynamic Linear Models Discount-Weighted Bayesian Model Averaging for Portfolio Decisions in Matrix Variate Dynamic Linear Models
In this paper, we assess Bayesian model averaging (BMA) techniques for dynamic linear models (DLMs) with variance matrix discounting. In previous research, the discount factors for the variance matrices and the auto-regressive lag have typically been pre-determined and held constant over time. Using posterior model probabilities, we average DLMs employing different discount rates and lag parame...
متن کاملComparison of Bayesian and Frequentist Methods in Estimating the Net Reclassification and Integrated Discrimination Improvement Indices for Evaluation of Prediction Models: Tehran Lipid and Glucose Study
Introduction: The Frequency-based method is commonly used to estimate the Net Reclassification Improvement (NRI)- and Integrated Discrimination Improvement (IDI) indices. These indices measure the magnitude of the performance of statistical models when a new biomarker is added. This method has poor performance in some cases, especially in small samples. In this study, the performance of two Bay...
متن کاملBayesian Sample Size Computing for Estimation of Binomial Proportions using p-tolerance with the Lowest Posterior Loss
This paper is devoted to computing the sample size of binomial distribution with Bayesian approach. The quadratic loss function is considered and three criterions are applied to obtain p-tolerance regions with the lowest posterior loss. These criterions are: average length, average coverage and worst outcome.
متن کاملModel Selection in Ultrasonic Measurements on Trabecular Bone
Previous work from our laboratory showed that the widely reported decrease in phase velocity with frequency (negative dispersion) for ultrasonic waves propagating through trabecular bone can arise from the interference of two compressional waves, each of which exhibits a positive dispersion. Previous simulations suggest that Bayesian probability theory can be employed to recover the material pr...
متن کامل